Let $a$ be first term $a=\sqrt[\ln 4]{4}$ which become $a=4^{\frac{1}{\ln 4}}$. Applying $\ln$ on both sides and using power of power rule yields $\ln a=\Big(\frac{1}{\ln 4}\Big)(\ln 4)$ or $\ln a=1$ thus $a=1$.
Using the same analogy, note that all terms are $e$ therefore $\displaystyle \sqrt[\ln 4]{4}\sqrt[\ln 9]{9}\sqrt[\ln 16]{16}\cdot \sqrt[\ln 100]{100}=e \cdot e \cdot e \cdots e=e^9$
Using the formula for the logarithm of a power and a calculator, we have $$\log 6^{3000}=3000\log 6\simeq 2334.45$$ Thus $6^{3000}$ has 2335 digits.
This problem is asking to find an integer $k$ such that $$56 \leq \log 18^{k} < 57$$ Using the power property of logarithm,
we can rewrite the inequalities above as $$56\leq k\log 18 < 57$$ Dividing all sides of inequality by log 18 gives
$$\frac{56}{\log 18}\leq k < \frac{57}{\log 18}$$
Using a calculator,
$$44.61 \leq k < 45.40$$ Thus the only possible choice is $k=45$. Again using a calculator, we see that $$\log 18^{45}=45\log 18 \simeq 56.48$$ Thus $18^{45}$ has 57 digits.
Taking $\log$ on both sides of $5^n > 10^{100}$, we have
$$\log 5^n > \log 10^{100}$$
which can be rewritten as $$n \cdot \log 5 >100 \cdot \log 10$$
This implies
$$n > \frac{100}{\log 5} \simeq 143.06$$
The smallest integer that is bigger than 143.06
is $n=144$.
\begin{align*}
\log_4(8x) & =\log_4x+\log_4 2+1\\
\log_4(8x) &= \log_4x+\log_4 2+\log_4 4 && \text{ replace } 1 \text{ with }\log_4 \\
\log_4(8x) & =\log_4(8x) && \text{ by property of logarithms}\\
8x&= 8x
\end{align*}
Note that last statement is true for any value of $x$. In our case we limit to $x>0$ which is the domain or our $\log_4 x$ function.
\begin{align*}
\Big(\frac{2}{3}\Big)^{k-1}&=\Big(\frac{81}{16}\Big)^{k+1} &&\\
\Big(\frac{2}{3}\Big)^{k-1}&=\Big(\frac{3^4}{2^4}\Big)^{k+1} &&\text{Express } 81 \text{ as } 3^4 \text{ and } 16 \text{ as } 2^4\\
\Big(\frac{2}{3}\Big)^{k-1} &=\Big[\Big(\frac{3}{2}\Big)^4\Big]^{k+1} &&\text{Apply property of exponents } \Big(\frac{a}{b}\Big)^m=\frac{a^m}{b^m}\\
\Big(\frac{2}{3}\Big)^{k-1}&=\Big(\frac{3}{2}\Big)^{4(k+1)} &&\text{Apply power of power property } (a^n)^p=a^{n \cdot p}\\
\Big[\Big(\frac{3}{2}\Big)^{-1}\Big]^{k-1}&=\Big(\frac{3}{2}\Big)^{4(k+1)} &&\text{Apply recipricol property } \Big(\frac{a}{b}\Big)^{-1}=\frac{b}{a}\\
\Big(\frac{3}{2}\Big)^{-k+1} &=\Big(\frac{3}{2}\Big)^{4(k+1)} &&\text{Apply power of power property } (a^n)^p=a^{n \cdot p}\\
-k+1 &=4(k+1) &&\text{Equal powers of exponents}\\
-k+1 &=4k+4 &&\text{Distributy property}\\
5k &=-3 && \text{Simplify like terms}\\
k &=-\frac{3}{5}\\
\end{align*}
\begin{align*}
4^{2015}-4^{2014}-4^{2013}+4^{2012} & =45(2^x) &&\\
4^{2012}(4^3-4^2-4^1+1) & =45(2^x)&&\text{Factor out }4^{2012}\\
4^{2012} \cdot 45 & =45(2^x) &&\text{Simplify}\\
4^{2012} &=2^x &&\text{Divide both sides by 45}\\
(2^2)^{2012} &=2^x &&\text{Write } 4 \text{ as } 2^2\\
2^{4024} &=2^x &&\text{Apply power of the power rule } (a^n)^p=a^{n \cdot p}\\
4024&=2x &&\text{Equal powers of exponents}\\
x&=2012 &&\text{Divide both sides by 2}\\
\end{align*}
\begin{align*}
& (\ln x)^2-\ln x^4-12=0 && \text{Original Equation}\\
& (\ln x)^2-4\ln x-12=0 && \text{Apply power rule of logarithm } p\log_b M=\log_b M^p\\
& (\ln x-6)(\ln x +2)=0 &&\text{Factoring }\\
&\ln x-6=0 \text{ or } \ln x+2=0 &&\text{By zero product property}\\
&\ln x=6 \text{ or } \ln x=-2 &&\text{Simplify}\\
& x=e^6 \text{ or } x=e^{-2}=\frac{1}{e^2} && \text{Definition of logarithm}
\end{align*}
\begin{align*}
& \displaystyle \frac{\log 3}{\log 2}\cdot \frac{\log 4}{\log 3}\cdot \frac{\log 5}{\log 4}\cdots \frac{\log(n+1)}{\log n}=3\\
&\text{Note that we can cross simplify most of the terms, which yields }\\
&\displaystyle \frac{\log(n+1)}{\log 2}=3\\
&\displaystyle \log(n+1)=3\cdot \log 2\\
&\displaystyle \log(n+1)=\log 2^3\\
&\displaystyle n+1=8\\
&n=7\\
\end{align*}